
Theory of the lattice Boltzmann equation: Symmetry properties of discrete velocity sets

Robert Rubinstein1,* and Li-Shi Luo2,†

1NASA Langley Research Center, Hampton, Virginia 23681, USA
2Department of Mathematics and Statistics, Center for Computational Science, Old Dominion University, Norfolk, Virginia 23529, USA

�Received 3 March 2006; revised manuscript received 25 January 2008; published 25 March 2008�

The lattice Boltzmann equation replaces continuous particle velocity space by a finite set; the velocity
distribution function then varies over a finite-dimensional vector space instead of over an infinite-dimensional
function space. The number of linearly independent moments of the distribution function in a lattice Boltzmann
model cannot exceed the number of velocities; finite dimensionality therefore necessarily induces linear de-
pendences among the moments that do not exist in a continuous theory. Given a finite velocity set, it is
important to know which moments are free of these dependences. Elementary group theory is applied to the
solution of this problem. It is found that decomposing the velocity set into subsets that transform among
themselves under an appropriate symmetry group makes it straightforward to uncover linear dependences
among the moments. The construction of some standard two- and three-dimensional models is reviewed from
this viewpoint, and procedures for constructing higher-dimensional models are suggested.
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I. INTRODUCTION

A guiding principle of this series of papers is the formu-
lation of the lattice Boltzmann equation �LBE� as a discrete
kinetic theory �1–10�. In kinetic theory, moments of the dis-
tribution function f�x ,� , t� over the space of velocities � are
the components of tensors of various ranks �11,12� that de-
fine continuum fluid properties like mass, momentum, en-
ergy, stress, and heat flux. Analogous moments can be
formed in the discrete setting of the lattice Boltzmann equa-
tion; however, since the number of linearly independent mo-
ments cannot exceed the number of velocities, discreteness
permits linear dependences that do not exist in the continu-
ous case �13�.

Thus, in kinetic theory, the number of linearly indepen-
dent moments of order n,

�x,t� =� d�� ¯ �

n times

f�x,�,t� ,M �1�

is equal to the number of linearly independent products �¯�
in the integrand—namely, �n+1��n+2� /2 in three dimen-
sions and �n+1� in two dimensions. But in a discrete kinetic
theory, in which the integral over continuous velocity space
� in Eq. �1� is replaced by a sum over a finite velocity set C
with N elements,

M�x,t� = �
ci�C

ci ¯ ci

n times

f i�x,t�
�2�

the factor f i�x , t� restricts the number of linearly independent
moments to at most N. Therefore, if N� �n+1��n+2� /2, the
tensor defined in the discrete theory by Eq. �2� necessarily
has fewer independent components than its continuous coun-
terpart defined by Eq. �1�. Such a reduction remains possible
due to linear dependences even if N� �n+1��n+2� /2. When-

ever a tensor in a discrete theory has fewer independent com-
ponents than its continuous counterpart, we will say that the
tensor is incomplete in this discrete theory; if it has the same
number, we will say that it is complete.1

Incomplete tensors in a discrete model are artifacts with-
out continuous analogs; a fundamental problem in discrete
kinetic theory is therefore given a finite velocity set
C : = �ci� to determine what tensors are complete. The pur-
pose of this paper is to develop a systematic approach to
solve this problem. The approach is based on the observation
that the discrete velocity set �ci� is not an arbitrary collection,
but is chosen to be as symmetric as possible so that the
model can mimic the physical isotropy of the fluid. In par-
ticular, two-dimensional models typically are based on a dis-
crete velocity set with the symmetry of a square: that is, it is
invariant under a group of transformations of two-
dimensional � space that map the set of four velocities
���1, �1�� into itself, and three-dimensional models are
typically based on a velocity set with the symmetry of a
cube: that is, it is invariant under a group of transformations
of three-dimensional � space that map the analogous set of
eight velocities ���1, �1, �1�� into itself.

It is natural to exploit the symmetry of the configuration
of discrete velocities by applying the elementary representa-
tion theory of finite groups �cf. �14,15��. Although models
can and have been constructed case by case using elementary
methods, group theory offers the advantages of a systematic
and unified approach. We do not claim that group theory
results in a “better” way to construct models, in the sense of
being faster, easier to formulate, or even easier to under-
stand. We only contend that group theory provides a natural
approach that reveals some problems common to construct-
ing any discrete model, which can be hidden by lengthy al-
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1This definition will be applied, for example, to a trace-free
second-rank tensor; such a tensor is complete in three dimensions if
it has five components. Completeness of a second-rank tensor does
not require that it have the maximum number, 6, independent com-
ponents. This convention will apply to tensors of arbitrary rank.
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gebra, even �or perhaps especially� if the algebra is done
symbolically. We note that group theory has also been used
to study lattice-gas cellular automata �16–22� and lattice
Boltzmann models �23–25� from a different perspective. The
content of this paper is limited to the kinematics of the de-
scription of tensors by finite discrete velocity models; a ten-
sor need not be well described dynamically in a model in
which it is complete: this issue will be discussed at the end
of the paper.

The outline of the paper is as follows. We shall first re-
view elementary group theory and its application to simple
discrete velocity sets in three dimensions based on the verti-
ces, edges, and faces of a cube. The group theoretical analy-
sis will be used to study models D3Q6, D3Q13, D3Q15,
D3Q19, and D3Q27. �Here, the standard notation DdQq is
used to denote a q-velocity model in d-dimensional space.�
Some preliminary discussion of a D3Q51 model will be
given. We shall also discuss some two-dimensional models.
It will be shown that expressing the models in terms of irre-
ducible representations �cf. �14,15,26�� of the group of sym-
metries of a cube or a square can help answer basic questions
about the kinematics of discrete models. Brief discussions
are then given of the role of the choice of symmetry group
and of the role of higher-order moments in discrete hydrody-
namics.

II. DECOMPOSITION INTO IRREDUCIBLE
REPRESENTATIONS IN THREE DIMENSIONS

The formulation of lattice Boltzmann models begins with
a discrete velocity set C= �ci� chosen from a lattice �xZD with
lattice constant �x in continuous D-dimensional velocity
space �. In three dimensions, the highest symmetry possible
for the set C is the symmetry of a cube �cf. �26��. Since a
model with any less symmetry cannot be satisfactory, this
symmetry will be imposed on all velocity sets C at the out-
set. We will describe this symmetry by the group of 24 ro-
tations of the cube. Adding inversions leads to the complete
group of 48 symmetries; however, it will appear that the
main ideas can be explained and understood more simply
using the smaller group.

The distribution function is a finite sum

f�x,�,t�: = �
ci�C

f i�x,t���� − ci� , �3�

where f i�x , t� is the discrete particle distribution function as-
sociated with particles with discrete velocity ci �1,2�. It will
sometimes be convenient to write the distribution function as
a function of the velocities in the finite-dimensional vector
space spanned by the set C as

f�x,c,t�: = �
ci�C

f i�x,t�ĉi, �4�

where ĉi assigns unit particle population to the velocity ci
and zero to all other velocities.

The multiple-relaxation-time �MRT� formalism of
d’Humières et al. �5,13,27� models the collision process
through the relaxation of moments, which therefore play a
central role in the formulation. Moments of the distribution

function f are defined in terms of polynomials chosen from a
set �pj���� by

M j�x,t� =� d� f�x,�,t�pj��� = �
ci�C

f i�x,t�pj�ci� . �5�

Thus, values of the moments are determined by linear com-
binations of rows of the matrix:

Aij = 	pj
ci�: =� d� ��� − ci�pj��� = pj�ci� , �6�

where the bra-ket notation is extended by linearity to linear
combinations of polynomials and velocities.

The number of linearly independent moments is the rank
of the matrix A in Eq. �6� when pj varies over the chosen set
of homogeneous polynomials and ci varies over the set C.
The rank can certainly be found by straightforward linear
algebra; however, useful simplifications result if the matrix A
is evaluated after expressing both �ci� and �pj����, regarded
as bases of vector spaces on which the group of rotations of
the cube acts as a group of linear transformations, in bases
�c̃i� and �p̃j���� consisting of quantities that transform by
irreducible representations �14,15,26� of the group of rota-

tions of the cube. The resulting matrix will be denoted by Ã.
The irreducible representations are the representations of the
lowest dimension from which all possible representations
can be constructed; we refer to elementary texts �e.g.,
�14,15,26�� for details. Fundamental orthogonality properties

imply that Ãij = 	p̃j 
 c̃i�=0 whenever p̃j and c̃i belong to dif-

ferent irreducible representations. Thus, Ã consists of blocks

Ãij in which the indices i and j vary over vectors transform-
ing by the same irreducible representation. These blocks are
dn�dn if there are n occurrences of an irreducible represen-
tation of dimension d; since these blocks are much smaller
than the original matrix A, the computation of the rank is
greatly simplified.

The irreducible representations of the group of 24 rota-
tions of the cube are exhibited in the following �14,15,26�:

Repr. Polynomials

�1 1

�1� xyz

�2 ��x2 − y2�,�y2 − z2�,�z2 − x2��: = ���x2 − y2��
�3 �xy,yz,zx�: = ��xy�
�3� �x,y,z�: = ��x�

�7�

The notation �p�x ,y ,z� will be used henceforth to indicate
the additional polynomials obtained from p�x ,y ,z� by cyclic
permutation of x, y, and z. The notation x, y, and z and index
notation x1, x2, and x3 will both be used as convenient to
denote the components of the particle velocity �: no ambi-
guity is possible because configuration space x plays no role
in this paper. In the table above, for each representation �n,
the subscript n indicates its dimension and a set of n linearly
independent polynomials is given which transforms irreduc-
ibly according to �n. Representations of the same dimension
are distinguished by primes. Only two of the polynomials
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listed for �2 are linearly independent. We prefer this sym-
metric notation to making a �necessarily� unsymmetric
choice of a basis for the space on which this representation is
defined.

A. Discrete velocity sets

The smallest discrete velocity sets invariant under the
group of rotations of the cube are formed from the vectors
describing the edges E, vertices V, faces F, and the center O
of a cube. Explicitly, these sets are

12 edges E ���1, � 1,0�,��1,0, � 1�,�0, � 1, � 1�� ,

8 vertices V ���1, � 1, � 1�� ,

6 faces F ���1,0,0�,�0, � 1,0�,�0,0, � 1�� ,

1 center O ��0,0,0�� , �8�

where, in the interest of simplicity, the lattice constant �x is
taken to be the unit of length. These sets are bases of finite-
dimensional vector spaces on which the group of rotations of
the cube acts as a group of linear transformations. To sim-
plify the notation, these vector spaces and the representations
of the rotation group of the cube which they carry will also
be denoted by the letters E, V, F, and O, even though,
strictly speaking, the representations are sets of linear trans-
formations �or matrices� defined over these vector spaces.

Routine calculations give the decompositions into irreduc-
ible representations

E = �1 � �2 � 2�3 � �3�, �9a�

V = �1 � �1� � �3 � �3�, �9b�

F = �1 � �2 � �3�, �9c�

O = �1. �9d�

The explicit linear combinations of velocities that occur in
these decompositions are listed in the Appendix.

The meaning of these decompositions is very simple.
Consider, for example, the decomposition of F: if we have a
linear combination of these velocities �aici, introducing the
basis given in Eq. �A1�, which we write as c̃1 for �1, c̃1

2 and
c̃2

2 for �2, and c̃1
3, c̃2

3, and c̃3
3 for �3�, we have

�
ci�F

aiĉi = a1c̃1 + a1
2c̃1

2 + a2
2c̃2

2 + a1
3c̃1

3 + a2
3c̃2

3 + a3
3c̃3

3. �10�

Whereas arbitrary rotations of the sphere mix all of the co-
efficients ai, the coefficient a1 is invariant under all rotations
of the cube, the coefficients ai

3, i=1,2 ,3, transform among
themselves according to the irreducible representation �3�,
and the coefficients ai

2 transform according to �2.
The absence of the representation �3 in the decomposition

of F in Eq. �9c� suggests that the three polynomials ��xy�
that transform among themselves by �3 according to Eq. �7�
must vanish in the set F. Similarly, the absence of the repre-

sentation �2 in the decomposition of V implies that ��x2

−y2� vanish on V. Although these results are both obvious, it
will be shown that group theory can help uncover less obvi-
ous linear relations.

Turning to the velocity sets that are commonly used to
construct LBE models, consider the D3Q13 �28�, D3Q15,
D3Q19, and D3Q27 models. The decompositions into irre-
ducible representations of the representations of the group of
rotations of the cube acting on the vector spaces generated by
these velocity sets are perhaps best given in a table, which is
easily obtained from Eqs. �9a�–�9d�:

Model Velocity set Decomposition

D3Q13 E � O 2�1 � �2 � 2�3 � �3�

D3Q15 F � V � O 3�1 � �1� � �2 � �3 � 2�3�

D3Q19 F � E � O 3�1 � 2�2 � 2�3 � 2�3�

D3Q21 E � V � O 3�1 � �1� � �2 � 3�3 � 2�3�

D3Q27 E � V � F � O 4�1 � �1� � 2�2 � 3�3 � 3�3�

�11�

The theoretically possible model D3Q21 is given in the in-
terest of completeness.

B. Polynomials

We next consider the polynomials �pj���� that generate
the moments. The rotations of the cube form a group of
linear transformations of the continuous vector variable �
and, by obvious extension, a group of linear transformations
of homogeneous polynomials in the components of �. We
will again require the decomposition of these representations
into irreducible representations.

Denote by Pn the set of all homogeneous polynomials in
�x ,y ,z� of degree n. It is obvious that any constant P0 is a
rotational invariant and therefore transforms as �1. Accord-
ing to Eq. �7�, linear polynomials P1 transform irreducibly as
�3�. For quadratic polynomials, a new possibility arises: any
quadratic polynomial is a linear combination of

r2 � x2 + y2 + z2, �12�

an invariant �also of the group of all rotations of space
SO�3�� that transforms as �1, and a remainder. This decom-
position also occurs in the continuous case, where it is re-
flected in the occurrence of the �scalar� pressure as the trace
of the stress tensor. This decomposition can be written as

P2 = r2P0
� P2,0, �13�

where P2,0 denotes the set �
aijxixj
akk=0� of quadratics with
a trace-free coefficient matrix. According to Eqs. �9a�–�9d�,
the representation of the group of rotations of the cube on
P2,0 splits into the sum

P2,0 = �2 � �3, �14�

so that finally

P2 = �1 � �2 � �3. �15�

For cubic polynomials, we note first that the product of r2

and a linear polynomial evidently transforms by the irreduc-
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ible representation �3�. Separating this contribution, we ob-
tain an analog of Eq. �13�:

P3 = r2P1
� P3,0. �16�

The first term corresponds to the possibility of generating a
vector from a symmetric third-rank tensor aimn by the con-
traction ai=�mnaimn. A familiar physical example is the gen-
eration of the heat flux vector from the stress flux tensor. The
remaining seven polynomials P3,0 define an irreducible rep-
resentation of SO�3�. Equations �13� and �16� illustrate how
the trace operation is used to construct irreducible represen-
tations of SO�3� �29�.2

The representation of the group of rotations of the cube on
P3,0 splits into the sum of irreducible representations

P3,0 = �1� � �3 � �3�, �17�

where the representations on the right-hand side occur on the
polynomials

�1�: xyz ,

�3: ��x�y2 − z2�� ,

�3�: ��x�2x2 − 3y2 − 3z2�� = ��x�5x2 − 2r2�� . �18�

Since this decomposition is less obvious than the simple re-
sult for second-rank tensors, we note that the decomposition
in Eq. �17� is found using the character table and that vectors
in Eq. �18� can be constructed systematically using projec-
tion operations �26�. The elementary calculations are not
given here. It follows from Eqs. �16� and �17� that

P3 = �1� � �3 � 2�3�. �19�

It could be surprising that a cubic polynomial x�y2−z2� ap-
pears in a representation �3 corresponding to a second-rank
tensor. This circumstance can perhaps be explained by a
simple table as follows:

x y z yz zx xy x�y2 − z2� y�z2 − x2� z�x2 − y2�
− x z y yz − yx − xz x�y2 − z2� − z�x2 − y2� − y�z2 − x2�

�20�

The first three columns represent the special symmetry op-
eration �x ,y ,z�→ �−x ,z ,y�, and the second three columns
show the corresponding transformation of the three variables
��yz�: since these linear transformations are obviously dis-
tinct, this symmetry operation distinguishes between �3 and
�3�. The final three columns exhibit the transformation of the
quantities ��x�y2−z2��: they obviously transform like the
variables ��yz�—that is, by �3 rather than by �3�. In the com-
plete group of 48 symmetries of the cube, these two occur-
rences of �3 would split into two representations with oppo-
site parity under inversion. This point will be discussed
further later in the paper.

For homogeneous quartic polynomials

P4 = r4P0
� r2P2,0

� P4,0, �21�

and under the group of rotations of the cube, we have the
decomposition

P4,0 = �1 � �2 � �3 � �3�, �22�

where the representations on the right side occur on the poly-
nomials

�1: �I4� ,

�2: ��3�x4 − 6x2y2 + y4� − 2I4� ,

�3�: ��xy�x2 − y2�� ,

�3: ��yz�6x2 − y2 − z2�� , �23�

where I4 : = �x4+y4+z4�−3�x2y2+y2z2+z2x2�=r4−5�x2y2

+y2z2+z2x2�.
To summarize, we began with the decompositions given

by Eqs. �13�, �16�, and �21� of the homogeneous polynomials
P2, P3, and P4 of degrees 2, 3, and 4 into multiples of powers
of invariant r2 and the remaining polynomials P2,0, P3,0, and
P4,0, which are not multiples of powers of r2. The represen-
tations of SO�3� on the vector spaces P2,0, P3,0, and P4,0 are
well known to be irreducible �29�, but the representations of
the group of rotations of the cube on these spaces are reduc-
ible and their decompositions into irreducible representations
are given as Eqs. �14�, �17�, and �22� in terms of the explicit
polynomial sets defined in Eqs. �7�, �18�, and �23�. The re-
ducibility of these representations is closely linked to the
possibility of incomplete tensors; this connection will be
developed in the next section.

III. MATRIX A: CONSTRUCTION OF MODELS

In Sec. II A, a basis �c̃i� of the linear span of the finite set
C is constructed in which the basis elements transform by
irreducible representations of the group of rotations of the
cube; the corresponding basis of polynomials �p̃j� is con-
structed in Sec. II B. The velocities and polynomials are now
combined by evaluating the matrix A using these bases; the

result will be denoted by Ã. Recall that entries of Ã vanish
whenever c̃i and p̃ j transform by different irreducible repre-

sentations so that Ã has a block structure which makes it
easier to analyze than the original matrix A.

The orthogonality properties of irreducible representa-
tions imply another simple but useful conclusion: assume
that the set of velocities C has been chosen and that the
representation of the group of rotations of a cube on the
linear span of C admits the decomposition into irreducible
representations

C = n1�1 � n1��1� � n2�2 � n3�3 � n3��3�. �24�

In order that A have full rank, it is necessary that the repre-
sentation of the linear span on the polynomial set P admit
exactly the same decomposition

2See in particular p. 149. From Weyl’s standpoint, we are consid-
ering the special case of fully symmetric tensors �equivalent to ho-
mogeneous polynomials�; Weyl’s much more general presentation
concerns tensors of arbitrary symmetry.
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P = n1�1 � n1��1� � n2�2 � n3�3 � n3��3�. �25�

Equations �24� and �25� provide a useful a priori constraint
on the polynomial set given the discrete velocity set. These
equations significantly refine the obvious condition that the
velocity and polynomial sets must have the same dimension

dim C = dim P �26�

by identifying this common dimension as dim C=dim P
=n1+n1�+2n2+3n3+3n3� and by stating that the individual
multiplicities n1, n1�, n2, n3, and n3� must be equal.

The conditions �24� and �25� are only necessary, because
nothing prevents the rank of these blocks 	p̃i 
 c̃i� from having
less than maximal rank, which must also be checked. Obvi-
ously, however, checking the rank of these blocks is much
simpler than checking the rank of the entire matrix A. The
process is best explained by examples.

A. D3Q6 model

The simplest discrete model is Broadwell’s original model
with six velocities �30� based on the faces of a cube. Given
the velocity set F from Eq. �8�, the problem is to choose
polynomials to generate appropriate moments. A systematic
procedure to guide this choice can be exhibited in tabular
form as follows:

�1 �1� �2 �3 �3�

D3Q6 1 0 1 0 1

P0 1 0 0 0 0

P1 0 0 0 0 1

P2,0 0 0 1 1 0

�27�

The first row, labeled “D3Q6,” shows the multiplicities of
the irreducible representations in the decomposition of the
representation of the group of rotations of the cube on the
linear span of the discrete velocity set, in this case the set F.
The decompositions of the representations on polynomials of
degrees 0, 1, and 2 are given in the next lines. It is under-
stood that P0 can be any scalar r2n—that is, any polynomial
set that transforms like �1�—and P1 can be any set
r2n��x�—that is, any polynomial set that transforms like ��x�.
If they are linearly independent, the moments defined by
each row are components of a complete tensor: in this case,
the second row can define a scalar, the third row a vector,
and the last row a trace-free second-rank tensor. The goal is
to choose entire rows as nearly as possible to construct the
model.

Comparison of the first row with the others shows imme-
diately that the model must contain contributions from each
row: for example, to obtain the representation �1, we must
include P0, and to obtain �3�, we must include P1; however,
the trial set P0 � P1 � P2,0, corresponding to a scalar, a vec-
tor, and a trace-free second-rank tensor, has dimension 9.
Since its dimension exceeds the number of discrete veloci-
ties, the moments generated by these polynomials cannot be
linearly independent. The explanation is that, as noted ear-
lier, the quadratic polynomials that transform as �3, ��xy�
vanish identically on the set F. We cannot include all of the

polynomials in P2,0 to form the model, but are forced instead
to select only the occurrence of �2. The model based on
D3Q6 therefore necessarily contains an incomplete second-
rank tensor.3

The set of polynomials corresponding to the velocity set F
must be

�1 from P0:�1� ,

�3� from P1:��x� ,

�2 from P2,0:���x2 − y2�� . �28�

It remains to verify that the polynomials actually are linearly
independent over the discrete velocity set. In this case, the
verification amounts to showing that no polynomial set van-
ishes identically on the set of points that transforms by the
same irreducible representation. The trivial verification is
omitted.

B. D3Q15 model

The table corresponding to Eq. �27� is

�1 �1� �2 �3 �3�

D3Q15 3 1 1 1 2

P0 1 0 0 0 0

P1 0 0 0 0 1

P2,0

P3,0

0

0

0

1

1

0

1

1

0

1

�29�

P3,0 must be included in order to accommodate the occur-
rence of �1� in D3Q15. However, the table immediately
shows that the moments formed from P3,0 cannot be the
components of a complete third-rank tensor, because P3,0

and P2,0 generate two occurrences of �3, while D3Q15 can
only have one. A suitable polynomial set is

3�1: �1�,�r2�,�r4� ,

2�3�: ��x�,��xr2� ,

�2: ���x2 − y2�� ,

�3: ��xy� ,

�1�: �xyz� . �30�

The table of representations again suggests the degeneracies
that must occur in this model. We have seen that the set P3.0

generates a redundant occurrence of �3, and indeed, the cu-
bics that transform as �3, given in Eq. �18� as ��x�y2−z2��,
all vanish identically on the velocity set D3Q15. The remain-
ing cubics �x�2x2−3y2−3z2�, which transform as �3�, prove
to be linearly dependent on the polynomials selected in Eq.
�30�, but we omit the simple verification.

3It should be noted that this fact was irrelevant to Broadwell’s
work.

THEORY OF THE LATTICE BOLTZMANN EQUATION: … PHYSICAL REVIEW E 77, 036709 �2008�

036709-5



We must again verify that these polynomials are linearly
independent over the discrete set of velocities F�V�O that
defines this model. For the irreducible representations that
only occur once, it is sufficient to verify that the polynomials
do not vanish identically. In this case, these representations
are �2 and �3, corresponding to quadratic polynomials. We
omit the easy verification. A nontrivial problem arises only
for the irreducible representations that occur with multiplic-
ity greater than one. Let us verify directly that the three
polynomials that transform according to �1 are linearly inde-
pendent in this model. Using the results of the Appendix, the
identity representation occurs on �ci�Oci,

1
6�ci�Fci, and

1
8�ci�Vci. Evaluating the polynomials 1, r2, and r4 on these
three functions gives the matrix


1 0 0

1 1 1

1 3 9
� . �31�

Since this matrix is nonsingular, the required linear indepen-
dence is demonstrated. A similar argument applies to the two
occurrences of the representation �3� and establishes that the
polynomials in Eq. �30� are indeed linearly independent over
the velocity set D3Q15.

In the notation of Eq. �4�, the distribution function of this
model is the finite sum

f�x,c,t� = �
ci�F�V�O

f i�x,t�ĉi. �32�

We have verified that the following linearly independent mo-
ments are possible in this model:

� = 	1
f� , �33a�

e = 	r2
f� , �33b�

	 = 	r4
f� , �33c�

j = 	�x
f� , �33d�

q = 	�xr2
f� , �33e�

p = 	��x2 − y2�, � xy
f� , �33f�

T = 	xyz
f� , �33g�

where the left-hand side denotes a tensor with components
given by the moments on the right-hand side. The scalars in
this model are the mass density �, a quantity e formally
related to the internal energy, and a fourth-order moment 	.
The vectors in this model are the momentum j and the vector
q related to the energy flux. One trace-free second-rank ten-
sor exists, the momentum flux, or stress p. All of these ten-
sors are complete. T is an incomplete third-rank tensor.

We recall that the analysis is restricted to the kinematics
of moments. By stating that the model contains a vector for-
mally related to an energy flux, we only assert that q is a

contracted third-rank tensor that transforms properly as a
vector; we do not assert that the D3Q15 model correctly
models the heat flux.

C. D3Q13 and D3Q19 models

Without presenting the straightforward details, we denote
the moments in the D3Q13 model,

� = 	1
f� , �34a�

e = 	r2
f� , �34b�

j = 	�x
f� , �34c�

p = 	��x2 − y2�, � xy
f� , �34d�

T = 	�x�y2 − z2�
f� , �34e�

where the distribution function is

f�x,c,t� = �
ci�E�O

f i�x,t�ĉi. �35�

The moment T is an incomplete third-rank tensor.
For the D3Q19 model, the moments are

� = 	1
f� , �36a�

e = 	r2
f� , �36b�

	 = 	r4
f� , �36c�

j = 	�x
f� , �36d�

q = 	�xr2
f� , �36e�

p = 	��x2 − y2�, � xy
f� , �36f�

e = 	��x2 − y2�r2, � xyr2
f� , �36g�

where the distribution function is

f�x,c,t� = �
ci�F�E�O

f i�x,t�ĉi. �37�

In this model, the flux of q is defined by the trace-free
second-rank tensor e and the scalar e. Whereas the D3Q13
and D3Q15 models both contain incomplete tensors, all mo-
ments in the D3Q19 model are complete. This model is ob-
served to be numerically more stable than the D3Q15 model
�31�.

D. D3Q27 model

We will not repeat the previous tabular procedure for
choosing the polynomials: we merely recall from Eq. �11�
that the points of the D3Q27 model decompose into 4�1
� �1� � 2�2 � 3�3 � 3�3�. Consider the candidate polynomials

4�1: �1�,�r2�,�r4�,�r6� ,
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�1�: �xyz� ,

2�2: ���x2 − y2��,���x2 − y2�r2� ,

3�3: ��xy�,��xyr2�,��x�y2 − z2�� ,

3�3�: ��x�,��xr2�,��x�2x2 − 3y2 − 3z2�� . �38�

In this case, the moments generated by the indicated polyno-
mial sets are not linearly independent over the velocity set
chosen. The linear dependence proves to occur in the three
occurrences of �3�. As in the analysis of the D3Q15 model,
we must evaluate the nine polynomials ��x�, ��xr2�, and
��x�2x2−3y2−3z2�� on the nine functions

c̃
 =
1

6 �
ci�F

ci
ĉi, c̃
� =
1

8 �
ci�V

ci
ĉi, c̃
� =
1

8 �
ci�E

ci
ĉi,


 = 1,2,3,

in which �3� occurs. We simply state the result of the calcu-
lation:


	x�
ĉ̃
� 	r2x�
ĉ̃
� 	x��2x�
2 − 3x�+1

2 − 3x�+2
2 �
ĉ̃
�

	x�
ĉ̃
�� 	r2x�
ĉ̃
�� 	x��2x�
2 − 3x�+1

2 − 3x�+2
2 �
ĉ̃
��

	x�
ĉ̃
�� 	r2x�
ĉ̃
�� 	x��2x�
2 − 3ci�+1

2 − 3ci�+2
2 �
ĉ̃
��

�
= 
2I3�3 2I3�3 4I3�3

8I3�3 24I3�3 − 32I3�3

8I3�3 16I3�3 − 8I3�3
� . �39�

Since

det
2 2 4

8 24 − 32

8 16 − 8
� = 0, �40�

we see that the three polynomials which transform as �3� are
not linearly independent of the set of velocities chosen.

Lallemand et al. �8� observed that the linear independence
could be restored by replacing the velocities corresponding
to the faces by the vectors F�= ���2,0 ,0� , �0, �2,0� ,
�0,0 , �2��. This alteration does not change any of the de-
compositions into irreducible representations; however, rou-
tine calculation shows that the polynomials which transform
as �3� are linearly independent over the set F��E�V�O
and that the following moments are linearly independent:

� = 	1
f� , �41a�

e = 	r2
f� , �41b�

	1 = 	r4
f� , �41c�

	2 = 	r6
f� , �41d�

j = 	�x
f� , �41e�

q = 	�xr2
f� , �41f�

p = 	��x2 − y2�, � xy
f� , �41g�

e = 	��x2 − y2�r2, � xyr2
f� , �41h�

T = 	xyz, � x�y2 − z2�, � x�2x2 − 3y2 − 3z2�
f� , �41i�

where the distribution function is

f�x,c,t� = �
ci�F��E�V�O

f i�x,t�ĉi. �42�

In this model, a fourth scalar 	2 exists and the third-rank
tensor T is complete. Equations �21� and �22� show that the
set of all quartics decomposes into irreducible representa-
tions as P4=4�1 � �1� � 3�2 � 4�3 � 4�3� and contains more
occurrences of �3 and �3� than admitted by the velocity set.
Correspondingly, we observe that the three quartic polyno-
mials �xy�x2−y2� that transform as �3� �compare Eq. �23��
vanish on the velocity set.

IV. HIGHER-ORDER MODEL: D3Q51

We next consider a higher-order model. Since the quartics
�xy�x2−y2� vanish on the discrete velocity sets based on the
edges, vertices, faces, and center of a cube, in any model
based on these sets of vectors or on sets of their scalar mul-
tiples, fourth-rank tensors cannot be complete. For example,
adding the 6 velocities ���3,0 ,0� , �0, �3,0� , �0,0 , �3�� or
the 12 velocities ��0, �2, �2� , ��2,0 , �2� , ��2, �2,0��
to the D3Q27 model will result in more complexity, but not
in complete fourth-rank tensors. To obtain them, a different
kind of velocity set must be added.

A general vector has 24 distinct images under the 24 ro-
tations of the cube; the edges, faces, and vertices have fewer
because they are invariant under special rotations. To find a
velocity set on which the quartics �xy�x2−y2� do not vanish
identically, it is necessary to add 24 velocities found as the
distinct images of a single vector under the group of rota-
tions of the cube: a model in which tensors of rank 4 can be
complete must contain at least 51 velocities.

One alternative is to add the 24 velocities obtained as the
images of the vector �2,1,0�. This set contains the velocities
with the smallest energy beyond the D3Q27 model; it is de-
noted as

G = ���2, � 1,0�,��1, � 2,0�,��2,0, � 1�,��1,0, � 2�,

�0, � 2, � 1�,�0, � 1, � 2�� . �43�

The representation of the group of rotations of the cube on
the linear span of this set decomposes into the irreducible
representations

G = �1 � �1� � 2�2 � 3�3 � 3�3�. �44�

The representation of the group of rotations of the cube on
the linear span of any set of 24 points obtained as the distinct
images of one lattice point will always admit the same de-
composition into irreducible representations as Eq. �44�: this
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is the “regular representation” of group theory. We add that
any set of vectors, obtained from any single vector by the
operations of the group of rotations of the cube, must contain
either 1, 6, 8, 12, or 24 distinct vectors and must define a
representation which decomposes into irreducible represen-
tations like one of the sets O, F, V, E, or G; there are no
other possibilities.

Let us consider the discrete velocity set of the D3Q27
model augmented by the set G, giving the velocity set
D3Q51=O�F��V�E�G. The representation of the
group of rotations of the cube on the linear span of this set
decomposes into irreducible representations as

O � F�
� V � E � G = 5�1 � 2�1� � 4�2 � 6�3 � 6�3�.

�45�

We again exhibit the choice of polynomials in tabular form:

�1 �1� �2 �3 �3�

D3Q51 5 2 4 6 6

P0 1 0 0 0 0

P1 0 0 0 0 1

P2,0 0 0 1 1 0

P3,0 0 1 0 1 1

P4,0 1 0 1 1 1

P5,0 0 0 1 1 2

P6,0 1 1 1 2 1

�46�

The first line shows that this model requires two polynomials
that transform as �1�. Finding these polynomials proves to be
nontrivial. The obvious choice xyz and r2xyz is unsatisfac-
tory because both vanish on the sets G, F, and E and they
coincide on V. It follows that xyz and r2xyz are not linearly
independent of D3Q51. The problem can be solved by intro-
ducing polynomials of degree 6 since �1� occurs on the poly-
nomial

p6�x,y,z� = x2y2�x2 − y2� + y2z2�y2 − z2� + z2x2�z2 − x2� ,

�47�

which obviously does not vanish on the set G. This polyno-
mial and xyz give two linearly independent polynomials that
transform by �1�.

Using this choice, we find that the choice of polynomials

5�1: �1�,�r2�,�r4�,�r6�,�x4 + y4 + z4 − 3�x2y2 + y2z2 + z2x2�� ,

2�1�: �xyz�,�x2y2�x2 − y2� + y2z2�y2 − z2� + z2x2�z2 − x2�� ,

4�2: ���x2 − y2��,���x2 − y2�r2�,���x2 − y2�r4�,

���x4 + y4 − 2z4 − 12x2y2 + 6y2z2 + 6z2x2�� ,

6�3: ��xy�,��xyr2�,��xyr4�,��x�y2 − z2��,

��x�y2 − z2�r2�,��yx�6x2 − y2 − z2�� ,

6�3�: ��x�,��xr2�,��x�2x2 − 3y2 − 3z2��,��xy�x2 − y2��,

���x4z − 6x2y2z + y4z��,���2x5 − 10x3�y2 + z2� + 5x�y4 + z4���
�48�

yields a D3Q51 model in which the tensors in Eq. �39� are all
complete and in which the following additional tensor of
rank 4 is also complete:

S = 	x4 + y4 + z4 − 3„x2y2 + y2z2 + z2x2�,

� �x4 + y4 − 2z4 − 12x2y2 + 6y2z2 + 6z2x2�, � xy�x2 − y2�,

� �6x2yz − y3z − yz3�
f�� . �49�

The model contains incomplete tensors of ranks 5 and 6.
In this case, the vanishing of the polynomial xyz on the

set G caused difficulties. An alternative is to add points on
which xyz does not vanish—for example, the images of the
velocity vector �3,2,1�. Although this possibility will not be
pursued here, we note that since there are only 24 images of
this point under the group of rotations of the cube, to obtain
the set of 48 points of the form ���3, �2, �1�, where �
indicates the six permutations of �3,2,1�, it would be neces-
sary to add the 24 images of the point �−3,−2,−1�. This
suggests the question whether it would not be more natural
to use the complete group of 48 symmetries of the cube,
including inversions; this question will be addressed in Sec.
VI.

This example illustrates some of the difficulties in con-
structing higher-order models: tensors of rank 4 are incom-
plete in D3Q27 because of the vanishing of three quartics; in
order to achieve complete quartics, 24 velocities were added
to the model, yet tensors of rank 5 remain incomplete.

V. TWO-DIMENSIONAL MODELS

To treat two-dimensional models by the group-theoretic
approach, the rotation group of the cube is replaced by a
symmetry group of the square. It will be taken to be a group
of eight transformations: the four 90° rotations and the four
reflections through the diagonals and the bisectors of oppo-
site sides. This group is larger than the group of four rota-
tions of the square and is chosen to provide as many repre-
sentations as possible. The choice of the symmetry group
will be discussed further in the next section.

The irreducible representations are

Repr. Polynomials

�1 1

�2 x,y

�1� �x2 − y2�
�1� xy

�1� xy�x2 − y2�

�50�

The simplest sets of discrete velocities invariant under this
symmetry group are formed from the faces and vertices of
the square, to which we add as before the center,

F = ��1,0�,�0,1�,�− 1,0�,�0,− 1�� ,

V = ��1,1�,�− 1,1�,�− 1,− 1�,�1,− 1�� ,

ROBERT RUBINSTEIN AND LI-SHI LUO PHYSICAL REVIEW E 77, 036709 �2008�

036709-8



O = ��0,0�� .

The corresponding representations decompose into irreduc-
ible representations as

F = �1 � �2 � �1�,

V = �1 � �2 � �1�,

O = �1.

As in the symmetry group of the cube, the representation of
the continuous rotation group on trace-free second-rank ten-
sors, given as the representation on quadratics
��x2−y2� ,2xy�, splits into �1� � �1�. To describe a second-rank
tensor completely, both representations are needed.

The simplest model in which a second-rank tensor is com-
plete D2Q9, defined by the set F�V�O. Since the repre-
sentation on these velocities decomposes into

F � V � O = 3�1 � 2�2 � �1� � �1�, �51�

we choose candidate polynomials belonging to the same rep-
resentations,

3�1: �1�,�r2�,�r4� ,

2�2: �x,y�,�xr2,yr2� ,

�1�: x2 − y2,

�1�: xy .

These moments are easily shown to be linearly independent
over the defining velocity set; accordingly, this nine-velocity
model describes the following moments:

� = 	1
f� , �52a�

e = 	r2
f� , �52b�

	1 = 	r4
f� , �52c�

j = 	x,y
f� , �52d�

q = 	r2x,r2y
f� , �52e�

p = 	x2y2,xy
f� . �52f�

To obtain a complete third-rank tensor, we can add the ve-
locities F�= ��2,0� , �0,2� , �−2,0� , �0,−2��, resulting in a
model D2Q13. The representation on the velocity set
F�F��V�O decomposes into

F � 2F � V � O = 4�1 � 3�2 � 2�1� � �1�. �53�

The polynomial set

4�1: �1�,�r2�,�r4�,�r6� ,

3�2: �x,y�,�xr2,yr2�,�x�x2 − 3y2�,y�3x2 − y2�� ,

2�1�: �x2 − y2�,�x2 − y2�r2,

�1�: xy

is easily shown to be linearly independent over the chosen
finite velocity space.

Let us briefly consider the formulation of higher-order
models. Eight more velocities can be added to F, V, and O,
either as the set F��V�= ���2,0� , �0, �2� , ��2, �2�� or,
following the D3Q51 model, as the set G
= ���2, �1� , ��1, �2��. The first set leads to a 17-velocity
model in two dimensions, which like D2Q9 cannot describe
a complete fourth-rank tensor: the polynomial xy�x2−y2� still
vanishes on all of the discrete velocities. On the other hand,
the representation on G decomposes as G=�1 � �1� � �1�
� �1� � 2�2. The resulting D2Q17 model contains a complete
fourth-rank tensor.

VI. CHOICE OF THE SYMMETRY GROUP

In this paper, the symmetry group of the velocity set is
introduced only in order to facilitate counting the linearly
independent moments by exploiting the orthogonality prop-
erties of distinct irreducible representations; no special
physical importance is attached to the symmetry group.
Thus, the group of rotations of a cube was chosen simply for
ease of exposition. It might seem equally natural to choose
the group of 48 symmetries that includes the inversions
�x ,y ,z�→ �−x ,−y ,−z� instead. The representation theory of
this group yields two irreducible representations with oppo-
site parity under inversions for every irreducible representa-
tion of the group of 24 rotations. This distinction can be
between representations on polynomials of even and odd or-
der. Examples encountered in this paper include the repre-
sentation of �1� on the polynomials xyz and x2y2�x2−y2�
+y2z2�y2−z2�+z2x2�z2−x2� where the first changes sign un-
der inversions while the second is invariant, and the repre-
sentations of �3 on ��xy� and on ��x�y2−z2��, where the first
is invariant under inversions while the second changes sign.
In both cases, the two representations of the complete group
of 48 symmetries of the cube are inequivalent, but the rep-
resentations of the group of 24 rotations of the cube are
equivalent.

For the purposes of this paper, then, little would be gained
by introducing the group of 48 symmetries of the cube in-
stead of the group of 24 rotations: the result would simply be
an irrelevant distinction between odd- and even-order poly-
nomials. However, if a theory that distinguishes between
axial and polar quantities is required, then the representation
theory of the complete group of 48 symmetries of the cube
would indeed be relevant for physical reasons. The two-
relaxation-time �TRT� LBE models �32,33� are examples in
which the moment basis is decomposed into its symmetric
and antisymmetric parts.

The choice of symmetry group in the two-dimensional
case raises a different issue. If we had made the obvious
choice of the group of four rotations of a square, there would
only be four irreducible representations. By choosing a larger
group with more irreducible representations, we can increase
the number of vanishing elements in the matrix A, thereby
lightening the algebra.
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VII. CONCLUSIONS

The representation theory of finite groups has been ap-
plied to the systematic construction of lattice Boltzmann
models in the moment-based formulation of d’Humières et
al. �5,13,27�. Given the choice of a finite velocity set �ci�, the
method helps identify the tensors for which a kinematically
satisfactory description is possible: here, “kinematically sat-
isfactory” simply means that the tensor in the discrete theory
has the same number of linearly independent components as
its continuous counterpart. Although these tensors can be
identified by elementary means, group theory introduces
natural vector space bases in which the calculations are par-
ticularly simple.

To illustrate the utility of group representation theory, we
cite the simple necessary condition for completeness of ten-
sors given by Eqs. �24� and �25� that generalizes the obvious
dimension count, Eq. �26�. Once the velocity set is chosen,
this condition significantly restricts the types of tensors that
can be complete in the model.

As a second example, we cite the introduction of the point
set ���2, �1,0� , ��1, �2,0� , ��2,0 , �1� , ��1,0 , �2� ,
�0, �2, �1� , �0, �1, �2�� to the D3Q27 model in order to
obtain complete fourth-rank tensors: without group theory, it
might not be obvious that the addition of point sets based on
scalar multiples of the edges, faces, and vertices will not lead
to the desired result.

As a final example, we cite the introduction of sixth-order
polynomials in the construction of the model D3Q51 in order
to obtain a second instance of the representation �1�. Trial and
error would also lead to this conclusion, but it is reasonable
to say that group theory provides a simple explanation: sex-
tic, but not quintic, polynomials furnish a linearly indepen-
dent occurrence of �1�.

By increasing the dimension of the space of moments,
adding more velocities makes complete tensors of higher
rank possible. Thus, in three dimensions, the Broadwell
model based on six velocities contains an incomplete
second-rank tensor; in the D3Q15 and D3Q19 models, the
second-rank tensors are complete, but a third-rank tensor is
incomplete; in the D3Q27 model, the lowest rank of an in-
complete tensor is 4. A similar progression occurred for the
two-dimensional models.

We would like to comment on some applications of mod-
els in which tensors of high rank are complete. The analysis
of Lallemand and co-workers �5,8,9� requires computing the
dispersion relation of waves of finite wave number in order
to assess the numerical stability of the method. From this
viewpoint, the present analysis is restricted to the zero-wave-
number limit. The wave dispersion relations couple the
higher-order moments, the completeness properties of which
will then have a role in the finite-wave-number properties of
the model.

Another possible application is to extended thermody-
namics �34,35�, where dynamic equations for nonconserved
moments like the stress and heat flux are derived. The Grad
13-velocity model is the starting point for such modeling. By
providing complete moments up to order 4, models like
D3Q51 can be the basis of a discrete extended thermody-
namics. Although further research will be necessary to deter-

mine the applicability of such models, it is evident that they
exhibit the minimal complexity needed to advance beyond
Navier-Stokes hydrodynamics in the discrete setting.

APPENDIX: SYMMETRY GROUP OF THE CUBE

This appendix lists the decompositions into irreducible
representations of the representations of the symmetry group
of the cube on the faces, edges, and vertices.

Denote the vectors corresponding to the faces of the cube
as c1= �1,0 ,0�, c2= �−1,0 ,0�, c3= �0,1 ,0�, c4= �0,−1,0�,
c5= �0,0 ,1�, and c6= �0,0 ,−1�. The decomposition of the
functions on these vectors into irreducible representations is
given by the linear combinations

F c1 c2 c3 c4 c5 c6

�1 1 1 1 1 1 1

1 1 − 1 − 1 0 0

�2 0 0 1 1 − 1 − 1

− 1 − 1 0 0 1 1

1 − 1 0 0 0 0

�3� 0 0 1 − 1 0 0

0 0 0 0 − 1 1

�A1�

The entry corresponding to �3� means that the three linear
combinations �c1−c2�, �c3−c4�, and �c5−c6� transform like a
vector under the symmetry group of the cube. Note that the
three linear combinations listed as transforming as �2 are
linearly dependent.

The linear combinations are of the form �1
i
6pj�ci�ci,
where the pj are polynomials transforming irreducibly as �1,
�2, and �3. In Eq. �A1�, these polynomials are, respectively,
�1�, ���x2−y2��, and ��x�.

Next, write the vectors corresponding to the eight vertices
as c1= �1,1 ,1�, c2= �1,1 ,−1�, c3= �1,−1,1�, c4= �−1,1 ,1�,
c5= �1,−1,−1�, c6= �−1,1 ,−1�, c7= �−1,−1,1�, and c8
= �−1,−1,−1�. The decomposition of functions on this set
into irreducible representations is given by the linear combi-
nations

V c1 c2 c3 c4 c5 c6 c7 c8

�1 1 1 1 1 1 1 1 1

�1� 1 1 − 1 − 1 1 1 1 1

�3 1 1 − 1 − 1 − 1 − 1 1 1

1 − 1 − 1 1 1 − 1 − 1 1

1 − 1 1 − 1 − 1 1 − 1 1

�3� 1 1 1 − 1 1 − 1 − 1 − 1

1 1 − 1 1 − 1 1 − 1 − 1

1 − 1 1 1 − 1 − 1 1 − 1

�A2�

Finally, denote the vectors corresponding to the edges as c1
= �1,1 ,0�, c2= �−1,1 ,0�, c3= �−1,−1,0�, c4= �1,−1,0�, c5
= �0,1 ,1�, c6= �0,−1,1�, c7= �0,−1,−1�, c8= �0,1 ,−1�, c9
= �1,0 ,1�, c10= �−1,0 ,1�, c11= �−1,0 ,−1�, and c12= �1,0 ,
−1�. The decomposition of functions on this set into irreduc-
ible representations is
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E c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

�1 1 1 1 1 1 1 1 1 1 1 1 1

�2 2 2 2 2 − 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1

− 1 − 1 − 1 − 1 2 2 2 2 − 1 − 1 − 1 − 1

− 1 − 1 − 1 − 1 − 1 − 1 − 1 − 1 2 2 2 2

�3� 0 0 0 0 1 1 − 1 − 1 1 1 − 1 − 1

1 1 − 1 − 1 1 − 1 − 1 1 0 0 0 0

1 − 1 − 1 1 0 0 0 0 1 − 1 − 1 1

�3 0 0 0 0 1 − 1 1 − 1 0 0 0 0

0 0 0 0 0 0 0 0 1 − 1 1 − 1

1 − 1 1 − 1 0 0 0 0 0 0 0 0

�3 1 1 1 1 0 0 0 0 − 1 − 1 − 1 − 1

− 1 − 1 − 1 − 1 1 1 1 1 0 0 0 0

0 0 0 0 − 1 − 1 − 1 − 1 1 1 1 1
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